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Final Performance Report

Grant: F49620-01-1-0390-P00003

Title: Numerical Computation in MagnetoFluid-Dynamics

Principal Investigator: Robert W. MacCormack

Commercial Phone: 650-723-4627 FAX: 650-725-3377

Mailing Address: Department of Aeronautics and Astronautics
Stanford University
Stanford, CA 94305-4035

E-Mail Address: rwmacc@aol.com

AFOSR Program Manager: Dr. Fariba Fahroo

Research Objectives:
a) Develop algorithms and boundary condition procedures for solving the complete equations
governing magneto-fluid-dynamics
b) Apply the developed numerical procedures to simulate the flow about realistic acrospace
configurations of Air Force interest .
¢) Support and complement magneto-fluid-dynamic research studies at AFRL

Status of Effort:
Prior to the start of the subject grant the following research accomplishments were made by the
principal investigator toward flow simulation governed by the equations of magneto-fluid-dynamics.
(1) Reforming the flux vectors of the equations governing MFD to be “homogeneous of degree
one” so that F = AU and a flux split algorithm could de devised. F, =AU and F.=4U

(2) Simulation of the flow about the fore-body of a hypersonic vehicle and the calculation of drag
and heat transfer with and without magnetic field interaction.

(3) Splitting the flux vectors directly, instead of basing the splitting on the state vector U.
F=AA'Fand F=AA'F

During the years supported by the subject AFOSR grant the following research accomplishments were
made. :

(4) Inclusion of both thermal and chemical non-equilibrium into the MFD equations.

(5) Simulation of the flow within MFD generators and accelerators for the proposed energy
“bypass scram jet engine” concept.

(6) Reformulating the governing MFD equations for strong imposed magnetic fields, of the order
of 10 Tesla, using the properties of the imposed magnetic fields, V-B=0 and VxB=0, to
avoid products of the order of B? from dwarfing values of static fluid pressure.

(7) Analysis of the physics of upstream influence caused by magnetic diffusion and the eigenvalue
properties of the MFD equations in comparison with the simpler “low magnetic Reynolds
Number” approach for flows within MFD generators and accelerators.

(8) Analysis of non-uniqueness of the equations of magneto-fluid dynamics

(9) Inclusion of Cesium seeding into the flow and the Park model for calculating electrical
conductivity based upon electron and ion concentrations. :

(10) Analysis of the physics of upstream influence of the flow about the nose of a hypersonic

vehicle




Accomplishments/New Findings:

Items (4), (6), (8) and (9) above represent progress toward research objective (a), Items (5) and (10)
toward research objective (b) and Items (7) and (10) toward research objective (c). Each will be
discussed below. First, we present the governing equations of magneto-fluid dynamics. .

1. The Equations of Magneto-Fluid-Dynamics -
The unsteady equations of compressible viscous flow within an imposed magnetic field become

oU oF oG oH
—t—t—+—=0
ot ox dy Oz
The state flux vector is given by
U=[ p, ou,pv,ow.¢",B,.B,,8,]
with density p, velocities u,v and w, total energy per unit volume, including magnetic field energy,

e’ =e+-B”, and By, By and B, are the components of the magnetic field. e = p(e+1(* +v' +w?)),

¢ represents the internal energy and B’ = B + B, + B; . The flux vector F* becomes

ou
pu’+p +7,~LBB,
povu+t,, -+ BB,
pwu+t,  —54 BB,
F={(+p +TJU+T v+ szw—k%Z—
29
+L(~(B-@)B, +B.B.+B,B,+ B.B.)
B

Bu-Byv+f,
Bu—-Bw+f,

9B, 9B,

—ax—,. ox,

with  p'=p+5.-B* and magnetic stress given by S, =-v, . The magnetic field
P 24, if e

components shown above represent the total of the imposed and induced fields. The viscous stress

~ ou,
tensor is given by 7 =—ﬂ[gl—l’—+—u—’j—c‘)‘,j/lgu—", where &, is the Kronecker delta. The other flux

dx; ox, ox,

vectors G and H are similar.
®
Thel Jacobian® ofR theR inviscidl partR off the® vector® F & (ie.Bwith® g=A=v,=0)KisR

givenEbyﬁgg =A4A=85"A'SR,BwithBS = g—g— , Hand® V=(,0,u, v,w,B,,B,,B, )T . BK
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Thel® matrix® A'® and® eigenvalues® aboveR® were® given® by® Powelll alongl with¥ thel
correspondingReigenvectors.B

®
TheR f1lux® vectors® of® the® MFDR equations® are® not® homogeneousl of® degreell onel withi

respect® tol thel statel vector,® but® they® canil bel triviallyR modified® sol that® theyl
becomel so .8 AR method® for® theirl solution® ink conservation® lawll formN was¥ presentedl




earlier’*.® The® method® uses® upwind®biased® fluxBvectorsfdirectlyl insteaddoflusingll
thelstateBvectors.RThis® improvesBaccuracy®andBallows®forlmorelflexibility®ink thel
eigenvectorRstructure, BwhichBwill@beRexploited®later.®

Modified Steger-Warming flux vector splitting is used to approximate the inviscid terms and central
differences are used for the viscous terms. A block implicit algorithm, using modified approximate
factorization with sub-iteration, was then used to solve the resulting set of finite volume difference
equations. This numerical method also uses frame independent smoothing, and has the option of
adapting the mesh to shock waves. The gas can be treated as a perfect gas or as a real gas in

equilibrium.

2. Inclusion of Chemical Non-Equilibrium into the MFD Equations for Simulation of the Flow within
MFD Generators and Accelerators for the Proposed Energy “Bypass Scram Jet Engine” Concept.
(Items (4) and (5) in the Status of Effort Section above).

The following four reaction seeded air chemistry model of Park, Mehta and Bogdanoff, for
temperatures to 4000K was used. The model employed here contains eight species. Species
downstream of the combustor containing hydrogen were not included.

) O+M < 0+0+M
2) N,+O< NO+N

3) O+NO- N+O,

4) Cs+e & Cs* +e +e”

The forward reaction rates, with parameters given in Tables 1-4, are of form.
k (T)=AT" exp(-T,/T)

Tablel. O,+M < O0+0+M

MK A,Hn®/ (kg-mol.sec)® | BRNK | Tr, KKK

N2R | RRRNEKS . 09x10" 128 -1.1K| 59,360K
028 | RR¥RKS . 09x10"120 | -1.1| 59,3608
NOR | BXRNNL.27x10" 13K -1.1K| 59,360K
NK RKXRRES . 09x10* 12K -1.1K| 59, 360K
Ol MRKENS . 09x10" 128 -1.1K([ 59,360K
csK | BRKKES . 09x10712K -1.1K| 59, 360K
Cs+R| MRRERS . 09x10% 12K -1.1K([ 59,3608
e-K | RRKXXS.09x10"14K -1.1R| 59, 360K

Table2. N,+0O & NO+N

A, m%/(kg-molsec) | n | Tr,K
5.69¢6 0.42 | 42,938

Table 3. O+NO & N+0,

A, m*/(kg-mol.sec) | n Tr, K
2.36e3 1.00 | 19,220




Table 4.Cs+e” & Cs* +e” +e”
A, m"/(kg-mol.sec) | n Tr, K
3.90e27 -3.78 | 45,180

The backward reaction rates, with parameters given in Table 5, are of form
k,(Ty=k (T)/ k (T) ,with k. (T)= exp(4,/z+ A, + A In(z) + A,z + A7)
and z=10000/T .

Table 5. Parameters keq, (MKS units)
Reac.1 | Reac.2 | Reac.3 | Reac. 4
A; | -0.9278 | 1.2441 | 2.3074 | -4.1036
A, | 17.1414 | 0.7192 | -2.9933 | 10.2278
As | 0.2816 | 0.8606 | 1.2493 | -3.4344
As4 | -6.0607 | -3.9981 | -1.8594 | -4.2851
As{ 0.0027 | 0.0085 | 0.0087 | -0.0097

The specie mole conversion rate equations become

R =) {k,[0,1IM,]-k,[O][O1IM,, ]I}

m=1
R, =k,[N,][0]-ky,[NOJ[N]
R, =k, [O][NOJ-ky,[N][O,]
R, =k, [Cslle” 1=k, [Cs*1[e"1fe ]
where the number of kilogram-moles/m3 of species Z is defined by [Z]= p, /@, , species density p,
and molecular weight @, . The time dependent species mole equations are then

d[N2]=—R2 d[N] +R2+R3

dt ’
d[i]_ ~R +R,, dgt)]_uk R,~R,
d[NO] dle’]

—4R-R,  Td=4R,,

dt dt
d[Cs] _ _R d[Cs*] _ 4R

dt © dt ¢

The heats of formation, energy taken from the gas internal energy to form species, are given in Table
6., in Joules/kilogram, along with species molecular weights and the initial concentrations, species

density divided by total gas density,c, = 0,/ 0.

Table 6. Physical Properties of Gas
w Initial ¢, | Heat of Form.
N2 |28.0110.76290 | 0.0

02 |32.00|0.23695 | 0.0

NO |30.07] 0.0 2.996123x10"6
N [14.01]0.0 3.362161x10"7




0 16.00 | 0.0 1.543119x10"7

Cs |132.9{0.00015 [ 0.0
Cs+]132.9 0.0 2.899905x10"6
e- |54.2*%10.0 0.0
* indicates x10"-5
Also, equations for species convection and diffusion need to be solved.
3 de,
_ 1 #s ox,

a  'ox p o ox

dc, oc,

z=18

The species mole equations are solved implicitly by sub-iteration in time. We can write them in vector
as . - . .
form as — = R(S) .S is a vector containing the 8 species mole elements and R(S) contains the 8

Sn+l _ Sn

right hand sides of the above equations. The sub-iteration procedure converges R(S™" v to

zero as follows.

- (m) _ gn
{1+A1A}(S("’”)—S<”>)=A1(R(S""’)—S—Xt-‘~g—)with S@=8" and S™ — S" as m— o0, AT is

chosen appropriately small and 4 =g§ is the Jacobian of Rwith respect to S. The sub-iteration

procedure is stopped when the maximum change in concentration of each species is less than 10°. The
species convection-diffusion equations are solved using upwind implicit finite volume approximations.

2-D simulations of the flow of air within an MHD generator were made with seeded cesium. The
generator was a square duct, 2.721m long, of height/width 64.85cm at the entrance and of height/width
85.14m at the exit. The magnetic field across the channel was 12.74 Tesla and the transverse voltage
gradient was -29,400 V/m at the entrance and -18,290 V/m at the exit. The numerical simulation varied
this voltage linearly from entrance to exit. At the entrance the pressure p=1,03 8x10° Pa, temperature
T=3371°K, and the Mach number equaled 2.418. The electrical conductivity was enhanced by the
seeding with liquid cesium. The Park program for calculating conductivity had difficulties near the
wall, which was held at a fixed wall temperature of T=300°K, and had to numerically limited within
the boundary layer to levels predicted by the Park program at the edge of the boundary layer. This
difficulty was later removed, as will be discussed later. The results for finite rate chemistry and
conductivity calculated from the Park program are shown in Figs.4-6.
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Figure 1. Velocity profiles within MHD generator, reacting seeded air chemistry.®




TheRsupersonicRvelocityRprofilesBwithinBtheRgenerator, BshownRalongRthelcenterl
planeRin®Fig.1,Rdeceleratelsignificant 1yNinBtheldiverging®ductBwhileRgeneratingl
electriclpower.K

oFx, Umax
b o
[¢,] 0]

o
\l

o_ll.lIIII|IIIT||I||||II|IIIIlIIlIIIIIIIII

0.65

0.6

Figure 2. Normalized force and velocity in axial direction within MHD generator section, reacting
seeded air chemistry
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Fig.2.BNote®thatBwithinBtheRgeneratordbothi F RandRu , Bdecreaselsignificantly. K

3. An Alternative Formulation of the Equations of Magneto-fluid-Dynamics - The Reduced MFD
Equations in Conservation Form (Item (6) in the Status of Effort Section above).

An alternate formulation of the governing equations of magneto-fluid-dynamics has been devised. This
formulation is mathematically equivalent to the original set of equations governing magneto-fluid-
dynamics given above, including magnetic self induction, and retains the conservation law form of the
equations and their eigenvalues. This new set has advantages over the original set when solved
numerically for flows within strong imposed magnetic fields.

The formulation treats the imposed and induced fields separately. Though ever present, the imposed
field remains in the background as the finite volume difference equations focus on the induced field.
The imposed field can not be eliminated entirely from the difference equations because of non-
linearity, but no squared imposed magnetic field terms appear. This is important for flows within
strong imposed magnetic fields, because the magnetic pressure, proportional to the square of the
imposed magnetic field strength, can be several orders of magnitude larger than the aerodynamic
pressure or the induced magnetic field pressure. Numerical errors in the very large magnetic stress




difference terms of the imposed field could be of significance when combined with the relatively
smaller fluid stress terms.

Before the introduction of this alternative formulation, there were two choices for including the effects
of a magnetic field upon an ionized flow: (1) the complete equations of magneto-fluid-dynamics,
including magnetic induction and (2) the inclusion of the *j cross B” force and Joule heating effects in
the Navier-Stokes equations as additional source terms. The first choice is a set of eight equations
consisting of the Navier-Stokes equations, with added magnetic stress tensor, plus the Maxwell
inductions equations and is presented in Sec.1. above. The second choice, a set of five equations,
called the "Low Magnetic Reynolds Number Approximation”, assumes that the induced magnetic
field is negligible. It is far more efficient and has far fewer numerical difficulties associated with
inclusion of magnetic effects than the first choice. There is, however, some uncertainty in when the
low magnetic Reynolds number is valid, even for aerodynamic flows of current interest. The now
available third choice presented below can be used to investigate this question.

The total magnetic field consists of the imposed magnetic field, Bo, and the induced magnetic field,

ﬁ,-, and B: = Bo + B:, where the subscripts #, 0 and i now and below indicate fotal, imposed and
induced magnetic components. For cases for which the induced field is much less than the imposed

field, but not negligibly small, we can benefit by rewriting the Lorentz force as L f =—1—(§7‘x§i)x_§ ,

e

because the imposed magnetic field is generated by currents external to the flow field, for which

VxBo=0. The approach taken here is similar to the simplification in electromagnetic scattering
where only the disturbed field is calculated, with nothing lost by the separation of the two fields.

We can also write the Lorentz force as Ly = ——l—(ﬁxﬁ)xﬁ - —1—-(§>< Bo)x Bo, and through some

e €

algebraic manipulation, the Lorentz force can be brought into the flux derivative terms of the
momentum equation, in conservation law form as before. The state vector becomes

U= [ 0, P, PV, ow,e ,Bi, Bi,, Bi, ]T and the new flux vector F' becomes

ou
pu’+p + T, —#L’BiXlew -'i‘{BiXBOX}
pvu+t,, —--/-L-Bin:x —i{BixBoy}
PWuU+T, —L'TBI'ZBI —/‘%{BixBoz}
F=|(+p +7 ) utT, v+ rxzw—kéz with p"=p+L-B’+-LB:. B and the magnetic
x 4 L3

+-L(~(B,-@)B,, + BoBi+ By Biy + B.B.)
Pr
B:yu - B,xv + ﬂxy
B,zu - thw + ﬁxz

aBij _ aBii J

ox, —é;cj

stress given by B, = —v{




By replacing the magnetic pressure,—z‘:sz, by the smaller 5%-B/ +'l}—¢Ei~Et, the magnetic and static

pressures are closer in magnitude for strong imposed magnetic fields. Favorable reductions also take
place in the induction equations because the magnetic diffusion terms B, are just components of the

curl of the induced magnetic field times v,. Again the imposed field, produced by currents outside the

flow field, is curl free. Hence, v,VxB.=v,VxB;. Here also the production and diffusion terms are
more equally balanced. Finally, the terms in the curly brackets in the momentum equations above
vanish if the imposed field is constant in space because of the divergence free nature of both the
imposed and induced fields.

One may assume that the structural changes to the equations, just presented, from the separation of the
induced and imposed fields, would have profound changes to the original eigenvalue-eigenvector
structure of the equations. Fortunately, the eigenvalues remain the same as shown below.

2
B: 1l , B’ (2 Btz] 2 B’
=u, =yt 22 A . =ut |-l P+2 + |+ 2 | —4c" == | and
}‘1,6 ’13,4 —\]_/0 Az,s ) 0 \[ 0 0

2
Ag=ut L (c2+&j —4¢* B
: 2" P o p

The eigenvectors are changed, however, but the original set can still be used in the solution procedure
as is to solve the alternative RMFD (Reduced Magneto-Fluid Dynamics) equations just presented,
because of the conservation form of the flux vector splitting used.

The term Reduced is used here to reflect the notion that the magnitude of the magnetic terms are
reduced by removing as often as possible the imposed magnetic field from them, although the number
of terms is actually increased. The RMFD equations are mathematically and physically equivalent to
the original MFD equations.

4. The Navier-Stokes Equations Plus a Source Term for Magnetic Field Effects - The Low Magnetic
Reynolds Number Approximation

An ionized flow within an imposed magnetic field can self induce, thus changing the magnitude of the
total magnetic field. The relative magnitude of the induced component depends upon the Magnetic
Reynolds number, defined by R, =u,J,0,4, , where u, and [, are reference flow speed and length, o,

is the gas conductivity and , g, is the magnetic permeability. The magnetic diffusion coefficient is

. For most aecrodynamic flows the gas conductivity is very small and, consequently,

given by v, =
O'Eﬂe
v, is very large and the magnetic Reynolds number is less than one. In such cases, any self induced

magnetic field supposedly rapidly diffuses away, leaving only the imposed magnetic field. This leads
to a great simplification in calculating the electro-magnetic effects upon an ionized flow. This
approach, The Low Magnetic Reynolds Approximation approach, only needs to add a source term to
the flow equations given above to include the electro-magnetic field effects.




Tonized flow in the presence of a magnetic or electric field generates a current, according to Ohm's
law, j=0,(E+uxB), where j is the current density, E is the electric field potential, u is the flow

velocity and B is the magnetic field. The electric current itself interacts with the magnetic field to
create a Lorentz force, Ly = jx B, that acts on the flow in addition to pressure, p, and viscous stress.

In addition to the Lorentz force added to the momentum equations, Joule heating, caused by the flow
of electric current through the fluid, plus magnetic force work terms need to be added to the energy

equation. The equations become
U N oF 0G N oH _

o ok o

The state, flux vectors and the source vector are given by U = [ 0, PU, pv, pw,e]T

S

\
pu 0
pu2+p+z'xx (]XB)X
F=|pvu+t, ,etc, RRand®RRS =|(jxB),
PwWU+T,, (j x 1})2
(e+p+ru)u+rxyv+rxzw—kg—i (jXB)'ﬁ'*'?rlT}'j

This equation set is sufficient to describe ionized flow within an electro-magnetic field, as long as the
fields are specified. It is not much more difficult to solve than the underlying Navier-Stokes flow
equations themselves. However, if the magnetic field varies in time by self induction and the induced
magnetic components are relatively significant in magnitude then the equations for magnetic induction
also need to be solved. This larger set, shown earlier in Sec. 1., is much more difficult to solve and
should not be attempted if it can be avoided.

5. Comparison of the Full MFD Equations, the Reduced MFD Equations ans the Low Reynolds

Number Equations
The figure below shows the velocity field within the accelerator region of a proposed energy bypass

scram engine, locate just downstream of the combustor.
K
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Figure 3. Velocity profiles within an MHD accelerator, reduced MHD simulation
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Figure 4. Normalized Force and velocity in the axial direction within an MHD accelerator section, (a)

Full MFD, (b) Reduced MFD and (c¢) Low Magnetic Reynolds Number

The supersonic velocity profiles within the accelerator are shown in Fig.3 to accelerate significantly in
the converging duct. These results were obtained from the Reduced MFD set of equations. This set of
equations is mathematically equivalent to the full set of MFD equations, but the imposed and induced
magnetic fields are separated. The imposed field is constant and can often be extracted from
derivatives in the governing equations. This is numerically helpful when the imposed field is much
larger than the induced magnetic field and consequently the imposed magnetic pressure, proportional
to the magnitude of the imposed field squared, is orders of magnitude greater than the aerodynamic
pressure. The reduced set of equations, called Reduced MFD herein, is still in conservation form and
has the same eigenvalue structure, but is numerically better posed. The Low Magnetic Reynolds
Number Approximation neglects the induced terms entirely. The Reduced MFD formulation was not
foreseen in the original proposed research, but developed subsequently after strong magnetic fields
were introduced into the study to simulate flows of Air Force interest.

Normalized axial force F, and maximum velocity u,,, are shown within the accelerator in Fig.4. All

three simulations, (a) the full MFD, (b) the reduced MFD and (c) the Low Magnetic Reynolds Number
Approximations are shown. The induced magnetic field for both the Reduced and full MFD
approaches was approximately 1% of the imposed field strength. Note for each case that both F, and

u_ increase significantly at first then level off as the flow traverses the duct. The full MFD results for

max

velocity show unexpected spatial variations, perhaps caused by the numerical difficulties discussed
earlier. Also, the Low Magnetic Reynolds Number Approximation is not in agreement for calculated
thrust with the other results that include magnetic induction. It is about 20% lower. This finding can be
very significant. If the Low Reynolds Number Approach is found to be physically incorrect for flows
at magnetic Reynolds Numbers less than one, as in the case here, their use to simulate flows within
magnetic and electric fields will have little confidence. The small 1% change in magnetic field caused




by induction results in a magnetic pressure of the order of the gas pressure itself and could explain this
effect. Further study, required to determine the significance and validity of these results is pursued in

the next section.

6. Analysis of the Physics of Upstream Influence Caused by Magnetic Diffusion and the Eigenvalue
Properties of the MFD Equations in Comparison with the simpler “Low Magnetic Reynolds Number”
Approach for Flows within MFD Generators and Accelerators. (Item ( 7) in the Status of Effort Section

above).

6.1 Simple test geometry problem
Thesel figures® demonstrate® thatl® theR twol mathematical® formulations® describell

different® physics.® OnR the® Shown® belowR arel thel resultsk from® thell threel numericalk
simulationsBfor®flowlwithin®an®MFDRacceleratorBwithBalsimplifiedfgeometry.dThel2DK
channelR consists® of® al rectangular® volumeR 3m.H long® and® 1m.® high.® TheR wall

temperatures@were@held@fixed@at@:&OO°K.NThe@imposed@magnetic@fieldlﬁwas@ By =11KTeslall

and® thel electricl field® was E, =-30, 0008 v/m.® Thel equilibriumR flowl enteringl thell

channelRwas® at@MachB1.1668 with® totall pressure, B 8x10°8 N/m’K andl totalld temperaturell
7500°K. R Thel electricall conductivity® wasB heldR uniform® within® thel accelerator atl

0 =36.0/(Qm) RandRt heBmagnet i cBReynoldsBnumberB R, = ud,o.u, =0.1847.
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The acceleration of the velocity vectors is shown in Fig.5. These results were obtained from the

Reduced MFD set of equations. Normalized axial force, F,(x)= J (pu® + p) ds, integrated across the
S(x)

channel, and maximum velocity u__ are shown within the accelerator in Fig.6 for all three
simulations. The maximum induced magnetic field was less than 2% of the imposed field strength.
Note for each case that both F, and u,, increase significantly at first then level off as the flow
traverses the duct. The Full MFD results for velocity show some unexpected spatial variations, perhaps
caused by the numerical difficulties discussed earlier. Also, the LowR, MFD result is not in

agreement for calculated thrust with the other results that include magnetic induction. It is about 8%
lower. The small 2% change in magnetic field caused by induction results in a magnetic pressure of the
order of the gas pressure itself and was first thought to be responsible for this effect
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Figure 6. Normalized Force (bottom) and velocity (top) in the axial direction within an MHD
accelerator section, (a) Full MFD - diamonds, (b) Reduced MFD - circles and (c) Low R, MFD -

squares

6.2 Possible Causes for Differences

Consider the following explanations for the differences in computed results:
(1) Errors in the numerical procedures caused the difference in results.
(2) The small induced magnetic fields are significant enough to change the magnetic stress, work
and heating within the flow field.
(3) The eigenvalue-vector structure of the equations is different enough to significantly alter
domains of dependence and influence within the flow field.

6.2.1 Numerical error in solving the equations

Unfortunately, numerical error is always present despite the most exhausting steps to prevent it and it
should be the first consideration. The test channel accelerator problem was made as simple as possible
to reduce potential error. The geometry is Cartesian-like, the magnitudes of the magnetic field, electric
field and electrical conductivity were constants, the flow was supersonic, except within the boundary
layer and the solutions were steady state. A single program was written to solve each set of equations.




Hopefully, only the equations changed and not the solution procedure for solving them. The Low R,

MFD set of equations was always the easiest to solve and the fastest to converge. The Full MFD
equations were the most difficult to solve, but they should give the right answer if solved correctly and
should be able to be used to tell when the simpler sets suffice. However, it will probably be quite
" awhile before we can solve them with confidence for all engineering flows of interest to hypersonic
vehicle design. Much more experimentation will be required for validation of numerical simulations of
MFD flows.
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Figure 7. Normalized Force and velocity (a) Reduced MFD — circles, (b) original Low R, MFD, -
squares and (c) Low R, MFD, using the total magnetic field from the above Reduced MFD solution

— small squares

6.2.2 Induced magnetic field may significantly change magnetic stress
To test out this hypothesis an additional calculation was made. The induced magnetic field from the

solution of the Reduced MFD set of equations was added to the imposed field and used as an initial
condition for the Low R, MFD set of equations. Therefore, both sets of equations had the same

magnetic fields at steady state. The results are shown in Fig.7. Although there are small differences
between the two Low R MFD solutions they end up with the same thrust and velocity at the exit.
Therefore the small difference in magnetic induction is not the cause of the difference in the thrust

observed earlier.
6.2.3 The different eigenvalue-vector structure
The eigenvalue-vector structure of the equations is different. The Low R, MFD set of five equations

has the same eigenvalues and eigenvectors of the underlying Euler or Navier-Stokes equations. These
eigenvalues for the flux in the x-direction are A ,,=u and A, =u*c, where uis the velocity in the
x-direction and ¢ is the speed of sound. These eigenvalues determine the domains of mathematical and

hence assumed physical domains of dependence and influence. For the MFD channel accelerator case
the flow is supersonic except within a very thin boundary layer at the walls. Therefore all the




eigenvalues are positive and permit no upstream influence. The Navier-Stokes equations also permit
diffusion because of viscosity. But outside the boundary layer viscous diffusion is insignificant for the
flow Reynolds number of the test problem.

The eigenvalues for the flux in the x-direction for the Full or Reduced MFD eight equation set are

2
B 1| , B (2 B’) 2 B}

=u, Ay,=ut > L, =ut [|F+= + |l += | —4c"= | and
A A o’ 2 P \/ P Iy

2
ut 1 c2+% —\/(c2+£J _4c2 B
2 P P

where B?is the square of the magnetic field, B, is the x-component and pis the density. 4,, are the

ag

Alfven wave speeds and 4, and A, are called the fast and slow magnetic wave speeds. If the
magnetic field is zero in magnitude, A, vanish and both sets of eigenvalues are equal. In addition to

viscous diffusion, magnetic diffusion, which can be orders of magnitude larger, can spread information
omni-directionally. Even though the flow is conventionally said to be supersonic in the x-direction for
the test case problem, all the eigenvalues are not positive and information can easily travel upstream.
The magnetic Mach number M,,,, =u/c, =0.148 at the entrance, where ¢, is the fast magnetic wave

speed and is given above by the large square root term appearing in the equation for A, s above.

The governing equations are meant to match the assumed physics and moreover vice versa. Here the
physics corresponding to the two descriptions, Full MFD and Low R, MFD are definitely different. Is

this difference responsible for observed differences in the flow simulations?
The answer is yes, which we can demonstrate with a little analysis. First, the Lorentz force is given
below.

6.3 The different eigenvalue-vector structure
The eigenvalue-vector structure of the equations is different. The Low R, MFD set of five equations

L= —1—@ XB)xB = o;(E +uXxB)xB . The Low R, MFD equations evaluate the Lorentz force term

by the expression to the right of the last equal sign above and the Full MFD equations by that to the
right of the first equal sign above. For the two dimensional test flow problem the curl of the magnetic
field has only a z-direction component.

— oB

Second, we can express the induction equations as
0B, _ o(vB,—uB,+v,D,)  OE

Z

ot dy dy
0B, . o(vB,—uB, +v,D,) _ 0E,
ot ox ox

and finally from them form a Poisson equation for D, as follows.
oD, 0’E, + 0’E,
ot ox* Oy’




We can solve this equation in an extended domain of the channel flow problem to illustrate the
powerful upstream and downstream influence of the induction equations. Earlier the domain enclosed
only the flow between the two electrodes extending from x=0 to x=3m. The extended domain covers
the flow ahead and downstream of the electrodes by 1m. each.

Figs.8 and 9 show the solutions for E, and D, from the Poisson equation on this domain. They

represent solutions to the Full and Reduced MFD equations.
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Figure 8. Contours of E, on extended domain
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Figure 9. Contours of D, on extended domain
Note the upstream propagation of E, for the Full MFD solution in Fig.8 and the strong gradients and

upstream propagation in D, shown in Fig.9, both of which could not be simulated using the Low R,
MFD approach.

6.4 Conclusion for test problem results
These figures demonstrate that the two mathematical formulations describe different physics. On the

original domain the Low R, MFD description behaved exactly as a conventional supersonic flow with

no apparent upstream influence. On the other hand, the Full MFD approach, through the fast magnetic
wave speed and high magnetic diffusion, did allow upstream influence even at the upstream boundary,
from which the flux split procedure accepted only information carried along characteristics needed for
the downstream solution. The differences shown earlier in thrust prediction resulted not from different
velocity distributions but from different mass flow rates entering the channel caused by upstream

influence.

However, there is considerable doubt that placing this boundary at the start of the electrodes for the
Full MED set of equations, as shown above for the simple test case geometry, allowed proper upstream
influence in view of the rapid gradients shown above at x=0m. in Fig.9. These calculations need to be
repeated with the upstream boundary located sufficiently far ahead of the electrodes, as shown in the

next subsection.

6.5 Extended accelerator geometry test problem
The channel was extended 1.5 meters both ahead and aft of the imposed electrode and magnetic field

section, thereby placing the boundaries at sections of the flow that are supersonic with respect to all
wave speeds of sound. The equations of the Full MFD Approach will induce a magnetic field beyond
the electrode-imposed magnetic field location, but it should not be strong enough to produce magnetic




waves capable of reaching the upstream boundary. The flow within the extended channel will be
simulated again using both approaches and then analyzed and discussed.
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Figure 10. Sketch of Extended MFD Accelerator
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Figure 11. Imposed Magnetic Field Figure 12. Imposed Electric Field

The extended MFD accelerator geometry is shown in Fig.10 and the imposed electric and magnetic
fields in Figs.11 and 12. The discontinuities in these fields present simulation difficulties. For example,
the magnetic pressure suddenly jumps to a value several times that of the fluid static pressure at x=0
and then back down again at x=3m. The equations describing this flow and a needed reformulation for
them, designed to overcome the simulation difficulty, are given in the following section.




The imposed magnetic field was B,, =4 Tesla and the electric field was E,, = -10,909 V/m., creating a

load factor of 2.004. The wall temperatures were held fixed at 300°K and the initial flow speed was
1361m/sec The equilibrium flow entering the channel was at Mach 1.166, with pressure 1.251x10°
N/m? and temperature 3,583°K. The electrical conductivity was held uniform within the accelerator at

o =36.0/(Qm) and the magnetic Reynolds number R, =ug/,0,u, =0.1847.
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Figure 13. Solution for By along centerline. Figure 14. Solutions for E, along centerline

.The solutions for B, and E, are shown in Figs. 13 and 14, along the channel centerline. Note the
relatively small induced magnetic field. The solution of the “Equation for E,” of Subsec.6.3 above is

denoted by E',. It was solved independently of the MFD equations of Subsec.6.3. The solution of the
MFD equations is denoted by E, and the solid symbols. The two solutions are in excellent agreement,
which is a validation of the MFD simulation.
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Figure 15. B, (top), By (middle) and E, fields.
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Figure 16. Velocity Field
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Figure 17. Thrust, F,(x) = I (pu’ + p) ds
S(x)

Thrust

6.5.1 A Serious Problem Concerning the Results Given Above
The solution to the MFD Equations was fully converged. That is, it satisfies the governing equations
relaxed to steady state and it also is in excellent agreement with the results for the “Equation for E,”

of Subsec.6.3 above. But, perhaps the reader noticed that it does not satisfy the constraint that the
induced field be divergence free.

6.6 Divergence of B Control

6.6.1 Artificial “Compressibility” Approach

For incompressible flow, artificial compressibility is often used to steer the velocity field toward being
divergence free. An artificial compressibility term proportional to the divergence of the velocity field

is added to the pressure, p«— p + A(V-ii). Similarly, to control divergence of the magnetic field,

we add the term v, (V- B) to the induction equations.

New 2-D Induction Equations -

9B, _ v,(V-B) 0(vB,-uB,+v,D,)

ot ox oy
0B, _ 3(vB,~uB,+v.D,) 3v,(V-B)
ot ox oy

The results given earlier did use the above equation, but it was not sufficient to prevent V. B from
becoming too large. Though it did, perhaps, prevent runaway growth.

6.6.2 Poisson Equation Approach

Full Poisson Equation Approach

First a Poisson Equation for a scalar function ¢ is solved —-+—— = —V-B. Then the magnetic field
X

components are modified to be divergence free, as follows.
B, < B, +8_¢ and B, <—By+-§£
ox dy




Partial Poisson Equation Approach

2
A 1-D Poisson Equation for ¢ is solved at each flow field point. i??__’_ =-V-B. The x magnetic field

dy
. . . . a¢ o
component is kept as is, but the y component is then modified, B, <——By+—é—, to maintain a
Y

divergence free magnetic field.

6.7 New Computational Results for Extended MFD Accelerator
The flow field was recalculated, using the Partial Poisson Equation Approach discussed above and the
new results are shown in the following figures.
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Figure 18. Solution for By along centerline.

Notice that By now increases at x=0, where previously it decreased, as shown in Fig.13.
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Figure 19. Solutions for E, along centerline.

Fig.19 reveals a really shocking surprise. The E, solution to the MFD equations, with the constraint on
the divergence of the magnetic field maintained, adjusts toward the original imposed magnetic field

E,,, and not the solution E', to the “Equation for E,” of Subsec.6.3 given earlier.




Without V- B =0 control by a Poisson Eq.
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Figure 20. Magnetic Field Lines

The magnetic field lines for both sets of results are shown in Fig.20. The results of Sec.6.5 did not use
a Poisson Equation to maintain a divergence free magnetic field and the results of the present section
used a Partial Poisson Equation for control. Note the large difference in the field line distributions. The
top figure resembles a supersonic wave pattern in the electrode region while the lower figure appears
to be like streamlines for a slowly rotating flow.

7. Analysis of Non-Uniqueness of the Equations of Magneto-Fluid Dynamics (Item (8) in the Status of

Effort Section above).
Two solutions have been presented for the extended accelerator geometry test problem. Is either
solution correct? Both satisfy the MFD equations and boundary conditions. Compare the solutions for

E, in Fig.14 with that in Fig.19. To say that the latter solution is correct because it satisfies V-B=0is
not sufficient. The first solution agrees with the solution E', to the “Equation for E,” of Subsec.6.3

and the latter adjusts toward the original imposed magnetic field E,, . We can determine which is
correct by looking at the unsteady Ampere-Maxwell Equation.

§E=L(VXB_jJ
a &g\ U,

But an underlying assumption made in deriving the MFD Equations is = —VxB

Hence, %?—:0 and E,=E, is the correct solution. It satisfies the unsteady Ampere-Maxwell
Equation as well as the constraint V-B=0.

The velocity and By fields are shown in Fig.21 and Fig.22.
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Figure 21. Velocity Field , With V-B=0 control
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Figure22. B, Field., With V-B=0 control
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Figure 23. Comparison of Full MFD and Low Re Approaches (red squares) for Normalized Thrust and
Maximum Velocity with By,=4 T. -

Normalized Thrust amd Maximum Velocuity

o
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Fig.23 compares the Full MFD and Low Magnetic Reynolds Number Approaches for predicting thrust
and maximum velocity within the accelerator. At By,~4 Tesla the two approaches agree very well.
However, note the velocity disturbance near x=0 in the Full MFD results. It appears that a shock wave
is propagating upstream toward the boundary. Further inspection did show the presence of a shock
wave moving upstream. The Low Magnetic Reynolds Number Approach did not and could not show a
similar feature. The question is — Should this shock wave be physically present or not? Did it start out
from numerical difficulties produced by the strong discontinuity in the imposed magnetic field? The
calculation was repeated using as the initial solution the converged solution from Low Magnetic

Reynolds Number Approach. The shock wave reappeared.

A second test case was simulated with a stronger magnetic field. The imposed magnetic field was
B,, =11 Tesla and the electric field was £, = -30,000 V/m., again with the same load factor of 2.004.

All other conditions were unchanged.
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Figure 24. Comparison of Full MFD and Low Re Approaches (red squares) for Normalized Thrust
and Maximum Velocity with By,=11 T.

Fig.24 compares the Full MFD and Low Magnetic Reynolds Number Approaches for predicting thrust
and maximum velocity within the accelerator. Again, the presence of a strong shock is observed. It has
moved to the upstream boundary. There are significant differences in thrust predicted by the two
approaches. At present, from further testing, it is believed that the Low Magnetic Reynolds Number
Approach is incorrect and, at these conditions, a shock wave does move upstream toward the entrance
boundary.

8. Inclusion of Cesium Seeding into the Flow and the Park Model for Calculating Electrical
Conductivity Based upon Electron and Ion Concentrations (Item (9) in the Status of Effort Section
above).

Previously a numerical difficulty was discussed in Sec.2 concerning the Park program for calculating
electrical conductivity near the wall within the boundary layer. This difficulty is now removed by
finding and correcting a statement in the Park program. Simulation results were then made for a non-
equilibrium flow.

An experimental Magneto-Hydrodynamic (MHD) channel is being tested at NASA Ames Research
Center by D.W. Bogdanoff, C. Park and U.B. Mehta to study critical technologies related to MHD
bypass scramjet propulsion. The channel about a half meter long contains a nozzle designed for Mach
2 flow, a center channel section and an accelerator section. Magnetic and electric fields can be imposed
upon the flow within accelerator section for MHD acceleration. The channel was uniformly 2.03cm
wide.
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Figure 25. NASA MHD Channel experiment

The initial conditions for the nozzle section consisted of the flow at rest at 8.0x10°N/m’ pressure,
7500°K temperature and an exit pressure low enough to generate supersonic flow. Because of flow
symmetry only half the channel was simulated in this 2-D calculation.

The imposed magnetic field was B, =4 Tesla and the electric field was £, =-25,000 V/m. The gas in

the accelerator was seeded and considered to be in non-equilibrium. The following four reaction
seeded air chemistry model of Park, Mehta and Bogdanoff was used. The model contains eight species.
) O,+M < 0+0+M

2) N,+0 & NO+N
3) O+ NO-N+O,
4) Cs+e” «>Cs' +e +e”

®
The electrical conductivity was calculated from the species mole fractions, temperature, density and

pressure of the gas, using a program developed by Park. A Baldwin-Lomax turbulence model modified
for MFD was used.
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Figure 27. Maximum velocity in the axial direction within accelerator section for initial Cis
concentrations of 0.3, 0.6, 1.2 and 2.4x107




Figure 28. Normalized force in the axial direction within accelerator section for initial Cs
concentrations of 0.3, 0.6, 1.2 and 2.4x107

Fig.25 shows the acceleration of velocity within the channel and Fig.26 and Fig.27 show the increase
in both axial velocity and force with increasing seeding concentrations of Cs. Earlier reported
difficulties in solving this problem have been overcome.

9. Analysis of the Physics of Upstream Influence of the Flow about the Nose of a Hypersonic Vehicle
Concentrations (Item (10) in the Status of Effort Section above).

A preliminary study on the upstream influence of the hypersonic flow about a sphere cone body
simulating the flow about the nose of a hypersonic vehicle has been started. We observed the
importance of the upstream influence of flow governed by the equations of magneto-fluid dynamics
earlier within channels simulating the flow in generators and accelerators relevant to the “energy
bypass scramjet engine concept”. Now we examine external hypersonic flow. Fig.29 shows “Mach
One” contour about a sphere cone body immersed in Mach 15 flow. The cone half angle is 15 degrees.
The Mach One contour was calculated by dividing the velocity normal to the body surface by the
speed of sound and locating values of unity . It is essentially the location of the bow shock wave about
the body, but not exactly so, and separates the flow disturbed by the body from the free stream.
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Figure 29. Mach One contour location,
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Equations

Fig.30 shows the Mach One contour location with a magnetic dipole placed at the origin. Note the
increased standoff distance. Fig.31 shows the same flow calculated by the Low Magnetic Reynolds

Number Approach. The agreement of the Full MFD and Low R, MFD Equations is excellent.
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Figure 31. Mach One contour location,
MFD Equations

Fig.32 shows the Mach One contour using the “fast sound speed” ¢, instead of the usual speed of

sound c.

Magnetic fields can propagate small disturbances with speed ¢, which can be many times larger than




c. The sound speed c, is directional. That given above is for the x-direction of travel.
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Full MFD Equations
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Note the greatly extended region of disturbed flow described by the Full MFD Equations. This
extended region would not occur from the Low R,, MFD Equations because there are not other modes

of wave propagation than the usual sonic speed.

An important question is “what is happening in the extended region?’. It appears that the flow is slowly
compressing and heating up until it passes over the bow shock wave where suddenly jumps up in
pressure, density and temperature. Thus, the region just ahead of the bow shock is not undisturbed free
stream flow, but flow with a higher temperature than that of the free stream. Hence, the Mach number
just ahead of the bow shock wave is reduced from the free stream Mach number. It is amazing that the
Low R, MFD Equations miss this entirely yet still predict the bow shock location accurately. But, are

there other important features of the flow that the Low R, MFD Equations fail to predict? It appears

that the heating of the flow outside of the shock wave may have a significant effect of body surface
heat transfer. This will be explored subsequently.

10. Importance of this Research

This research has pointed out the simulation differences between the Full MFD and Low Reynolds
Number Equation approaches. The former is a very complicated set of equations, with non-uniqueness
issues and constraint satisfaction difficulties. However, it is a more complete description of the flow
about and through bodies of Air Force interest than the simpler Low Reynolds description, now in
widespread use. The present status in the development of algorithms for the equations of magneto-
fluid-dynamics is not yet mature enough to simulate flows about aerospace configurations with
confidence. It is important to continue this research to avoid catastrophic design errors caused by flow
simulations that do not include all the relevant physics.
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